Prediction of ‘Gigante’ cactus pear yield by morphological characters and artificial neural networks

A estimativa da produtividade em palma forrageira é fundamental ao planejamento rural dos pequenos e médios produtores, sobretudo, em condições de adversidades climáticas como no Semiárido Brasileiro. Objetivou-se avaliar o potencial de Redes Neurais Artificiais (RNAs) na predição da produtividade em palma forrageira, e determinar os caracteres morfológicos mais importantes neste estudo. O experimento foi conduzido no Instituto Federal Baiano, Campus Guanambi, Bahia, Brasil, no período agrícola de 2009 a 2011. A região localiza-se nas seguintes coordenadas geográficas: latitude 14° 13’ 30” Sul, longitude de 42° 46’ 53” Oeste de Greenwich, altitude de 525 m. Avaliaram-se em 500 plantas seis caracteres agronômicos de natureza vegetativa no terceiro ciclo de produção. Os dados foram submetidos à análise no software R por RNAs. Dez arquiteturas de rede foram treinadas por 100 vezes, selecionando-se, ao final do treinamento, aquela com menor erro quadrático médio para os dados de validação. As redes com cinco neurônios na camada intermediária possibilitaram a máxima qualidade preditiva. Foram ajustadas redes neurais com coeficiente de determinação (R2) de 87,21% para a amostra de validação, assegurando o potencial de generalização do modelo. Os caracteres morfológicos de maior contribuição relativa foram a área total do cladódio, altura da planta, espessura do cladódio e comprimento do cladódio; porém, todos são importantes na predição da produtividade. Logo, é possível predizer a produção de palma forrageira com alta precisão por meio de RNAs e caracteres morfológicos.

Palavras-chave: estimativa; lógica artificial; produção; Opuntia ficus-indica

Veja o artigo

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Esse site utiliza o Akismet para reduzir spam. Aprenda como seus dados de comentários são processados.